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ABSTRACT

We consider the steady thermocapillary motion in a square cavity with a top free surface in the
absence of gravilational forces. The cavity is heated from the side with the vertical boundaries
isothermal while the horizontal boundaries are adiabatic. The relative change in the surface tension is
very small, i.e. an appropriate capillary number tends to zero, so that the free surface is assumed to
remain flat at leading order. A finite difference method is employed to compute the flow field.
Numerically accurate solutiogs are obtained for a range of Prandtl numbers and for Reynolds
numbers as high as 5 x 100. Surface deflections are computed as a domain perturbation for small
capillary number. In addition, asymptotic methods are used to infer the boundary layer structure in
the cavity, in the limit of large values of the Reynolds number Re and the Marangoni number Ma&
a fixed Prandtl number Pr, it is shown that the Nusselt number, liquid circulation and maximum
vorticity are asymptotic to Re'’3, Re’'/3 and Re?’3, respectively. These results are in agreement with
the computed solutions. The leading order solution for the free surface deformation is sensitive to the

value of Pr. With Pr ) 1, the depression near the hot corner may exceed the elevation near the cold

corner. While a secondary elevation may be induced near the hot corner when Pr< 1.
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1. introduction

Convective motions driven by a temperature gradient along the interface between two immiscible
fluids, due to the variation of surface tension with temperature, are of considerable interest and play
an important role in small scale and/or low gravity hydrodynamics (Schwabe, 1981 and Ostrach,
1982). Because these thermocapillary flows occur in crystal growth melts and dominate the
convective flows in the microgravity environment of space, there have been a number of recent

studies of simplified two-dimensional models with negligible gravitational effects.

Sen & Davis (1982) consider steady thermocapillary convection in a differentially heated
rectangular slot with a top free-surface. They present results valid for vanishingly small aspect ratio A
(height/width) with the Reynolds number Re ~ O{A), the Marangoni number Ma ~ O(A) and the
capillary number Ca ~ O(A%). The same‘ problem is also studied by Strani, Piva & Graziani (1983) for
A — 0 with Ca ~ O(A‘) but with milder restrictions on Re and Ma. These studies are instructive in
giving the fiow field and surface deflection in a conduction-dominated regime, but give little

information about strongly convective flows.

Strani et. al. (1983) also compute the thermocapillary motions in a rectangular cavity with A = 0.2, 1
and 5 and with the Prandtl number Pr = 1 (i.e. Ma = Re). They allow for free-surface deformation
and conclude, as expected, that for Ca = 0.1 surface deformation have a negligible influence on the
flow field. Because they use a coarse mesh for their finite-difference computations, their results are
accurate only for low Re and Ma. Since vigorous motion occurs in float-zones at high values of Ma
and Re (Schwabe 1981, Ostrach 1982), there is a need for further study of this model problem.
Axisymmetric modeling of a half-floating zone configuration has been considered by Fu & Ostrach
(1983) where they compute the flow field at different values of Re, Ma and Pr. Many of the features of

their solutions are common to ours:

The stability of such flows is of great interest. As the experiments of Preisser, Schwabe &

Scharmann (1983) and Kamotani, Ostrach & Vargas (1983) have shown, steady convection is stable
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only below certain values of the Marangoni number. Abhove the critical values, the flow is typically an
oscillatory one, with commensurate changes in the transport properties and important implications in
material processing applications. The only stability analysis of this class of flows is that of Smith &
Davis (1983a,b) who restricted their attention to plane-parallel flow profiles appropriate to
conduction-dominated situations. It is not known how relevant the stability limits calculated by these

3 authors are to strongly convective situations.

. In this paper we compute steady thermocapiilary flows in a square cavity (A = 1) by a finite-
difference procedure. C r objective is to obtain accurate numerical solutions to the stated problem at
1 as a high Reynolds number as possible, in order to characterize the pature of strongly convective
E flows of this general class. Only the case Ca — 0 is considered, so that the free-surface is assumed

flat at a leading order. Surface deflections are computed by domain perturbation. Boundary layer

formation at different values of Pr is observed at large values of Ma and Re. We use the numerical

results to infer the relevant scalings of a consistent boundary layer picture of the flow, valid
asymptotically as Re — co. We do not attempt to present a complete boundary layer theory since

solving the boundary layer problem seems to be as difficult as solving the full equations of motion.
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2. Mathematical model
The physical modet consists of a rectangular cavily of average height d and width w containing an

incompressible, Newtonian liquid. The top horizontal boundary is a free surface open to a passive

gas. The vertical rigid, isothermal -valls are differentially heated and are kept at temperatures + T°/2

relative to an arbitrary reference temperature. The bottom boundary is rigid and adiabatic. In the

absence of gravity, the nondimensional equations for the liquid motion are (Sen & Davis 1982)

v.L=0 , (2.1)
- Rev.(W) = -vp + vV , (2.2)
- May.(VT) = 92T . (2.3)
Here length, velocity, temperature and pressure are dimensionless with respect to d, yTolp. To and L ’
: yT,/d, respectively, where p is the viscosity and surface tension is assumed to decrease with AR

temperature increase at a constant rate y. The Reynolds number and the Marangoni numbers are : ;:-f ’

defined in the usual way by

2N
) St
: Re = yT,d/(pr) (2.4) Y
: hae
: Ma = Re Pr , (2.5) gRoY

where » is the kinematic viscosity and the Prandti number Pr = » / x, and « is the thermal diffusivity.

The motion is referred to a Cartesian coordinate system with the origin at the middle of the bottom If-i:'-j
boundary with the y axis parallel to the side walls. The boundary conditions on the fixed surfaces are: »
: =
: ¥(1/(2A).y) = © P M(x,0) =0 , (2.6a,b) NI
X il
’ T(£1/(2R),y) = F1/2  ; T (x,0) =0 |, (2.7a,b) e
- . .-- -
- where subscripts denote partial differentiation and the aspect ratio A = d / w which we set to unity in \\
.T the remainder of this paper. The x and y components of ¥ will be denoted as usual by u and v, :'C:T_:'.:‘
. S
- respectively. o

s F ¥
oo

in addition to Re, Ma and Pr, there is an additional dimensionless parameter which is a measure of
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the free surface deformation. This is the capillary number Ca and is given by
Ca = yTy/0, . (2.8)

where % is an average value for the surface tension. We see that Ca ~ Ac/co. and in experiments is
generally a small quantity; Kamotani et. al. (1983). We thus consider the case Ca — 0, i.e. only small
variations in ¢ and in surface deformation are allowed. If in addition to small Ca, we assume the
contact angle is #/2, the surface is initially located at a heighty = 1. Thusto leadir_lg order in Ca, we

assume a flat free surface with the boundary conditions

u (x,1) = =T, (x,1) : T(x,1) =0 . (2.9a,b)

Corrections to the surface are computed as follows. If we denote the departure of the free surface
fromy =1 by h(x), then in the limit Ca — 0 we find

h,, = Cap ; h(zx1/72) = 0 . _ (2.10a,b)
Equation (2.10b) assumes a fixed contact line. Other boundary conditions are possible; Sen & Davis

(1982). Because the pressure field p(x,y) is determined only to an additive constant, an additional

constraint on h(x) from global continuity is

-uzfuz hdx =0 . : (2.11)

Thus h(x) can be determined to O(Caz) by solving (2.10-2.11) once p has been found. We note for

tuture reference that the surface vorticity w, = -uy(x,1) is simply the surface temperature gradient.




3. Numerical procedure

Solutions to the system of equations (2.1), (2.2), (2.3), (2.6), (2.7) and (2.9) must be constructed by
‘-".jf some numerical method. At a first glance it would seem that a spectral method with an infinite order

convergence (Gottlieb & Orszag 1977) may be suited to the probiem. However, the hot and cold

: corners on'y = 1 are singular. The vorticity
W = vx - Uy Y (3 . 1)
is discontinuous at these corners, and will assume different values as a corner is approached on

different paths. Indeed, following the analysis of Moffatt (1964) it can be shown that, in the vicinity of

the hot corner, the vorticity is given by

R w = -T (-1/2,1) (1-46/%), - (3.2)

where the angle § is 0 on x = -1/2 and #/2 on y = 1. It should be noted that the flow field

corresponding to (3.2) is valid only very close to the comner so that the flow is locally a Stokes flow. A

similar expression holds for w near the cold comer. It is thus expected that w will vanish on the

ey Ty
. .

diagonals as the corners are approached.
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Since this discontinuity will limit the convergence of any spectral method we opt for a finite
difference approach. The method and the iteration procedure we use t(:) solve the finite difference
equations are described in detail by Patankar (1 981)._ Briefly, the computational region is divided into
rectangular control volumes with the grid points located at the geometric centers of these cells.
Additional boundary grid points are included where the boundary conditions (2.6,7,9) are imposed.
The finite difference equations are obtained by integrating the governing equations (2.1,2,3) over the
control volumes with assumed local linear variations in any of the primitive variables. The cohvection
and diffusion fluxes are approximated by a power-law scheme. The staggered location for the
velocity components is adopted and the velocity-pressure coupling treatment follows Patankar's

(1981) revised procedure. A line-by-line iteration to solve the discretized equations is used with one

completed iteration comprising five double sweeps of the field. Under-relaxation in solving for u, v

o e e e e AT A A A AT A T
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and T was required; a relaxation factor of 0.85 was used throughout.

After a number of solutions were computed on uniform grids with 65 x 65 and 80 x 80 mesh points,
we used a nonuniform grid with 62 points in the x direction and 54 points in the y direction, with the
highest concentration of the mesh points near the cold corner where, as we shall see, the sharpest
gradients occur. The smallest control volume at the cold corner is a square with side length 0.005.
The rectangular cell at the hot corner has an x extent of 0.01. The mesh spacing was gradually
increased away from the cold and hot corners in both the x and y directions. The largest mesh
spacing near the middle of the bottom boundary is less than 0.05. All computations were performed
on a VAX 11/780. A converged solution requires from 250 to 450 iterations, with each iteration
completed in less than 25 CPU seconds. Convergence was assumed when the largest variation in any
of u, v, p and T was less than some convergence tolerance which we set to 105, For extreme values
of Pr, we also performed some computations on a nonuniform mesh with the same smallest elements

but with 70 x 60 mesh points.

In table | we list some representative computed results with different grids from which we claim
accuracy within 3% for results with the 62 x 54 grid. It should be noted that the largest "error” is in
the magnitude of of circulation -y max (here ¢ is the streamfunction). This is especially true at large
Re and when the point at which ~¢w occurs is located far from the top corners, i.e. where mesh
spacing is relatively large. Because we use the conservative (divergence) form of the governing
equations, an exact solution of the difference equations should result in equal values for the Nusselt
numbers computed on the hot and cold boundaries Nu_and Nu‘_. respectively. Decreasing the

convergence tolerance results in yet closer values for Nu_and Nu __ than those listed in table .
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4. Numerical resuits; Pr = 1

- Our primary interest is in the character of the motion at large values of Ma and Re. Equation (2.3)
shows that Ma measures the strength of temperature (thermal energy) convection to diffusion. Thus
oy large values of Ma will lead to the formation of thermal boundary layers. Equations (2.1) and (2.2) can

be reduced to the vorticity transport equation
Rev.(Vw) = V2w , (4.1)

: and hence large Re implies the formation of regions of concentrated vorticity, in particular near the
free surface. We first consider the case Pr = 1, i.e. simultaneous formation of both temperature and

vorticity layers with Re = Ma.

- With Pr = 1, we compute the thermocapillary motion for 102 § Re 10%. As expected, the flow
consists of a major closed circulation, accompanied by Moffatt corner eddies at the two lower

i corners. The temperature ié distorted from a linear conductive field by this circulation, especially at

;:_ high Ma. The surface temperature distribution is of key interest, since it is the gradient of this quantity

which, through the thermocapillary stress, drives the motion. As an example of these features, we

~

show in Figure 1a-c the streamlines, isotherms and iso-vorticity contours for Re = Ma = 103, As can

be seen from Figure ic, there is a large concentration of vorticity near the stagnation point near the '-l-;"-f

cold (right) boundary. It is further seen that the stagnation point near the hot (left) boundary exhibits

T

little, if, any, boundary layer behavior. The dividing w = 0line is oriented at 45°, as required by (3.2). w3

' In Figure 2 we show the results of our parametric study at Pr = 1. We plot surface temperature c
. S
. ' e
.I,:'_ T(x,1), velocity u(x,1), and the surface deflection h(x) corresponding to five different values of Re (or .:j::‘,
b Ma). For Re less than about 1000, it is seen from Figure 2a that the surface temperature gradient at I
o

.'4' .,

the hot corner T‘(-1/2.1) is greater than the conduction value of -1, i.e a decreased surface vorticity

- .
P

R )
T YIRS SN
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. o 's
P

at the hot corner. At these relatively low values of Re, Figure 2b indicates that the surface velocity

? increases monotonically from zero and drops back smoothly to zero at the cold corner. The

;:f: associated surface deflection plot in Figure 2c shows that there are two peaks in h(x) which decrease
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in magnitude and move towards the corners with increasing Re. With Re (or Ma) increasing above
1000 however, Tx(-1/2.1) is less than -1 and decreasing, u(x,1) exhibits two peaks and h(x) showing a
more or less flat depression on an increasing length of the free surface near the hot (left) boundary. it
is also observed that the surface elevation near the cold corner is increasing with Re. From these
features it may be concluded that a boundary layer regime is reached for Re ( or Ma) greater than

about 1000.

The streamlines, vorticity and temperature fields corresponding to Re = Ma = .1 0* are shown in
Figure 3. From this Figure it may be concluded that the limiting flow field at large values of Re (or Ma)
will consist of an irrotational, isothermal core with boundary layers forming on the four boundaries.
The corner eddies predicted by Moffatt (1964) are present in Figure 3a, while the vorticity is
discontinuous near the corners in accor& with equation (3.2). The sharpest gradients occur near the

cold corner as evident in Figure 3c.

Of interest is the total heat transport, or the Nusselt number, defined by
Nu, = of' -T (21/2,y) dy (4.2)

As noted above, Nu = Nu_to within 1%. In Figure 4 we show the variation of T_ along the hot and
cold walls from which it follows that while all of the hot boundary partii:ipates in the heat transfer
process, only a "small" cold corner region contributes to most of the transfer. This picture will be

validated in section 5.

The vigor of the convective motion is indicated by the magnitudes of the heat transfer, flow
circulation (wm) and maximum vorticity (ww). Figure 5 is a logarithmic plot of the variation of
Nu = (Nu_+Nu’)/2, "W ax and --Pw with Re, where ©max = Tx(1 /2,1) for all the cases with Pr = 1

that we computed. From Figure 5 it may be concluded that

~Wpgx ~ O(REZ/3) (4.3)

Nu ~ O(Re!/3) . (4.4)
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“$nax ~ O(Re™Y3) | (4.5)

as Re — oco. We show in Section five how these asymptotic relations are in agreement with a possible

consistent boundary layer structure for this flow.




LA

5. Structure of boundary layers; Pr = 1

Below we develop a seif-consistent picture of the boundary layer structure which exists
asymptotically as Re — co. We show that, beginning with the key assumption that surface vorticity
becomes independent of Re as Re — oo, all of the available numerical evidence is in agreement with

the inferred scalings. The first region of interest is the boundary layer near the free surface.

Free surface layer

Here x ~ O(1). The assumption w ~ O(1), which follows from the boundary condition (2.9a) and

Figure 2c, together with the required balance of diffusion and convection lead to the free surface

transformation:

x=X ; y=1-Rely , (6.1a,b)
u = Re"VIG(R,¥) : v = REYIVK,¥) : ¥ = RE¥IP(X,Y) . (5.1¢c.d,e)

(5.1f1)

h-]
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Ty . (5.1g)
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u

Equation (5.1¢) implies a surface velocity decreasing with Re in qualitative agreement with Figure 2b.

The boundary layer equations, to leading order become

ug + -y = 0 (5.2a)
aﬁ! - Vl.-ly = -ai + Byf . (5.2b)
0 = Py . (5.2¢)

-% -1
atg - v'l‘i 2 Pr Tyy. . (5.2d)

These are the usual boundary layer equations. The known boundary conditions are

¥y=0: v§=T.=0 -y = T . (5.3a,b,c)

Matching conditions for y — oo with a core solution and initial conditions for X — -1/2 must be

provided.
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Core region
N Formally, the limiting equations in the core are
(V\.V)w =0 , (5.4a)
(L.9)T =0 . (5.4b)

Thus , in principle, w and T are constants along streamlines. Figures 2b and 2¢ indicate that the
i limiting core flow is isothermal (at some T o) and irrotational. The pressure field is then found from the

Bernoulli equation

N p + Re V%/2 = constant . (6.5)

Matching with the free surface layer indicates that

p ~ O(Rel3) ; v ~ 0'(Re'“3) . (6.6a,b)

so that the core streamfunction
¥ ~ O(ReV3) . (6.7)

This is consistent with equation (4.6) and Figure 4.

Cold corner region
This stagnation point flow region is where most of the heat transfer on the cold boundary occurs
(Figures 2a, 3c, 4b) and where the largest vorticity is generated. The horizontal free surface flow

turns in this region as u(x,1) drops sharply to zero (Figure 2b). The y extent and the amount of flow in

this region are determined by those in the free surface region. In addition, the required convection-

diffusion balance leads to the cold corner scalings

y*1-RY3§ ; x=1/2 -Re’2¥ % , (5.8a,b)
u=REVIGRY) : v = V(EF) : ¥ = RV J(R.F) (6.8¢,d,e)
- w = Re¥3 5(X.§) . (5.81)

Rel/3 B(X.¥) . (5.89)

(5.8h)
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The leading order equations, boundary and matching conditions become

g + ¥y = 0 (5.9a)
-ouy + Vg = Py + Ogp (5.9b)
-uvg - Wg = Ve (5.9¢)
-afg - 9T, = ety (5.9d)
X=0: G=v=0 ; T=-172 , (5.9e.7.g)

X — o0 Vo0 , U(X—00,y) ~ G(X—1/2,%) . (5.9h,1)

These quantities can not satisfy the initial conditions on y = 0 since ﬁ; ~ O(1) while 'T'; ~ O(Re?d).

Thus, there will be a corner subregion where

1/2 - x ~ O(Re ¥3) - (5.10a)
1 -y~ O(Re’Y) , (5.10b)
¥ ~ o(ne"”) . (5.10c)

T ~ 0(1) . (5.104)

it should be noted that (5.10c) is a consequence of higher order free surface layer, while (5.10b) is

necessary to satisfy the vorticity balance on the free surface.

Equations (5.8) is in complete agreement with Figures 3b, 4, indicating that most of the heat transfer

on the cold wall is within the corner region. In addition, it follows from equation (4.3) that

Nu = oft -T,(1/72.y) dy

~ Re'3 [® Ty0.§) dj . (5.11)

which, again, is in agreement with Figure 5.

The existence of these regions with various asymptotic scales (see equations 5.1, 5.8 and 5.10), is

very demanding on the computational mesh. This is particularly so at extreme values of Pr.
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Figure 6 gives a sketch of the important boundary layer regions, and the important scalings therein.
The boundary layer equations are difficuit to solve, however, because of the difficulty in conveniently
representing solutions to equations (5.4) in the core. Thus we expect that the boundary layer problem

may be as difficult to solve as the original equations.




...................................

6. Numerical results; Pr ¢ 1

Equations {2.2) and (4.1) show that convection of vorticity is stronger (weaker) than convection of
energy according to Pr<1 (Pr>1). The influence of Pr on the motion is ascertained from a sequence of
computations with Pr = 0.05, 0.1, 1, 10 and 50. The largest value of Re or Ma attainable with

reasonable accuracy was 50,000.

Figures 7a,b are plots of the surface temperature corresponding to Pr = 0.1 and 50 at various
values of Re. itis seen that, with increasing Re, the surface vorticity at the hot cornér first decreases,
and then begins to increase monotonically with further increase in Re. This is similar to the case Pr =
1 in Figure 2a. The surface velocity corresponding to the parameter values of Figures 7a,b are shown
in Figures 8a,b. Itis observed that a two-peak structure is eventually approached at sufficiently large
Re (or Ma). ltis important to note; anure. 8b, that at appropriately low values of Re (depending on Pr)
that for Pr > 1 the motion is faster near the hot corner than almost every where on the free surface
except in the readily develc';ped thermal (and vorticity layer ét the cold corner). The opposite is true

for Pr < 1 and low Re; Figure 8a, where convection is expected to dominate near the cold corner.

The influence of Pr on the pattern of circulation is evident from Figures 9a,b where show the
streamlines of the thermocapillary motion corresponding to Pr, Re and Ma values of 0.05; 1000; S0
and 50; 200; 10,000. At sufficiently low Re it is seen that the point where -nkw occurs is close to the
cold corner when Pr < 1, while for Pr > 1 this point occurs near the hot corner. Thus, again, it is
concluded that convective effects are more important at the hot (cold) corner according to Pr> 1 (< 1)
at appropriate low values of Re. With increasing Re, however, the pattern of motion is similar to that
for Pr = 1 in Figure 3a. This behavior with Pr was also found by Fu & Ostrach (1983) in their
axisymmetric hglf-zone model. |

Plots of -npm. Nu and -w_,. versus Re, similar to those in Figures 5a,b,c for Pr =1, show that the
asymptotic estimates given in equations (4.4), (4.5) and (4.6) are applicable with Pr = 1. This is also

indicative that the character of the motion becomes independent of Pr at sufficiently large Re.
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The most remarkable influence of Pr on thermocapillary convection is found on the shape of the
free surface. Figures 10a,b show h(x) for the parameter values of Figures 7a,b and 8a,b. It is seen
that for Pr > 1, the region of strong motion near the hot corner is accompanied by sufficient low
pressure that the largest depression exceeds the largest elevation. At Pr < 1 however, there is a build

up of pressure sufficient to produce a secondary elevation near the hot corner.

It is of interest to note that, for all the cases considered, Jh(x)] is small, (Figures 2c, 10), indicating
that the range of capillary numbers for which the surface deflection is accurately given by

perturbation in Ca may be rather large.
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7. Concluding remarks

We have presented the results of a reasonably complete study of thermocapiilary convection in a
square cavity. Our accurate computational procedure allows us to consider situations with large Re
and Ma, and thus observe the formation of boundary layers, in particular at the cold stagnation point
region. This boundary layer structure is shown to be consistent with an asymptotic theory valid as

Re — oo.

We encountered no difficulty in computing two-dimensional steady states by time-like iterations. It
is also felt, from numerical experiments, that such steady motions continue to exist at yet higher
values of Re and Ma. Since, from previous experimental work and from the analysis of Smith & Davis
(1983a), it is expected that oscillatory motions will prevail at some "supercritical” Re and Ma, it is
conjectured that such an unsteady motion is three-dimensional. It seems that there is no convenient
method to study the instability of the solutions we computed on the finite difference grid to three-
dimensional disturbances. Thus, further progress in the study of this phenomena' must be both

three-dimensional and time dependent.
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Table |
Influence of finite-ditference grid on the solution

: Pr Re Mx N Nu_ Nu, “Vpax X 102 W
‘ 0.06 5 x 10t 82 x 54  2.120 2.131 0.174 14.37

70 x 60 2.161 2.151 0.180 14.44
: 0.1 5 x 10 62 x 54 2,937 2.957 0.168 29.04
I 70 x 60  2.980 2.981 0.175 28.95
- 1 5 x 10° 65 x 65  3.459 3.448 0.370 28.72
: 80 x 80  3.454 3.447 0.373 31.20
- 62 x 54  3.420 3.412 0.366 38.37
; 50 5 x 102 62 x 54  4.895 4.898 0.155 139.4

70 x 60  4.894 4.896 0.155 139.7

* M and N are the number of grid points in the x and y directions respectively. The 65 x 65 and 80 x 80

grids are uniform while the 62 x 54 and the 70 x 60 grids are graded.
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Figure captions

o Figure 1. Thermocapillary flow at Pr = 1 and Re = 1000. a) Streamlines at equal
increments of circulation. The motion is clockwise with -\p" = 0.0048. b) Isotherms at
equal increments. c) Iso-vorticity contours. w = -1.0 and -11.79 at the top hot (left) and
cold (right) corners, respectively. The fargest positive w is 7.3.

e Figure 2. a) Surface temperature corresponding to Pr = 1 and Re = 100, 500, 1,000, .

5,000 and 10,000. b) Associated surface velocity, and c) surface deflection.

o Figure 3. Same as Figure 1 but with Re = 10,000. Here -y = 0.003; w = -2.4 and
-60.2 at the top hot and cold corners, respectively; and the largest value of w is 10.5.

o Figure 4. Variation with y of T_ on the a) hot boundary, and b) cold boundary at Pr = 1
and Re = 1,000, 5,000 and 10,000.

o Figure 5. Variation with log Re of log (-¥_ ).

log (-w,_, ) and log Nu. Also shown are
straight lines with slopes -1/3, 2/3 and 1/3.

o Figure 6. Sketch of the important surface layer regions. The following are the scalings in '

regions |, 11, Il and the core.

u . v ' @ T,

I: Re'V3 Re-2/3 Re-2/3 1 1
1I1: Re'? 1 Re"2/3 Re?/3 Re?/?
I11: Re-1/3 Re-2/3 Re-4/3 Re2/3 Re?/3

core: Re 173 Re~1/3 Re~1/3 1 1

o Figure 7. Surface temperature T(x,1) at a) Pr = 0.1 and Re = 103, 104, 2 x 10* and
5x 10%. b) Pr = 50 and Re = 20, 100, 200 and 500.

e Figures 8a,b. Associated surface velocity u(x,1) at the parameter values of Figures 7a,b,
respectivety.

o Figure 9. Streamlines corresponding to a) Pr = 0.05 and Re = 1000; -wbm = 0.0088, and
b) Pr = 50 and Re = 200; -ww = 0.0019. .

o Figure 10a,b. Surface deflection at the parameter values of Figures 7a,b, respectively.
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Figure lc
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